Linux Privilege Escalation
If you want to know about my latest modifications/additions or you have any suggestion for HackTricks or PEASS, join the 💬 PEASS & HackTricks telegram group, or follow me on Twitter **[🐦](https://emojipedia.org/bird/)[@carlospolopm](https://twitter.com/carlospolopm). If you want to share some tricks with the community you can also submit pull requests to https://github.com/carlospolop/hacktricks that will be reflected in this book. Don't forget to** give ⭐ on the github to motivate me to continue developing this book.
System Information
OS info
Let's starting gaining some knowledge of the OS running
Path
If you have write permissions on any folder inside the PATH
variable you may be able to hijacking some libraries or binaries:
Env info
Interesting information, passwords or API keys in the environment variables?
Kernel exploits
Check the kernel version and if there is some exploit that can be used to escalate privileges
You can find a good vulnerable kernel list and some already compiled exploits here: https://github.com/lucyoa/kernel-exploits and exploitdb sploits. Other sites where you can find some compiled exploits: https://github.com/bwbwbwbw/linux-exploit-binaries, https://github.com/Kabot/Unix-Privilege-Escalation-Exploits-Pack
To extract all the vulnerable kernel versions from that web you can do:
Tools that could help searching for kernel exploits are:
linux-exploit-suggester.sh linux-exploit-suggester2.pl linuxprivchecker.py (execute IN victim,only checks exploits for kernel 2.x)
Always search the kernel version in Google, maybe your kernel version is wrote in some kernel exploit and then you will be sure that this exploit is valid.
CVE-2016-5195 (DirtyCow)
Linux Privilege Escalation - Linux Kernel <= 3.19.0-73.8
Sudo version
Based on the vulnerable sudo versions that appear in:
You can check if the sudo version is vulnerable using this grep.
sudo <= v1.28
From @sickrov
Dmesg signature verification failed
Check smasher2 box of HTB for an example of how this vuln could be exploited
More system enumeration
Enumerate possible defenses
AppArmor
Grsecurity
PaX
Execshield
SElinux
ASLR
Docker Breakout
If you are inside a docker container you can try to escape from it:
Docker BreakoutDrives
Check what is mounted and unmounted, where and why. If anything is unmounted you could try to mount it and check for private info
Installed Software
Useful software
Enumerate useful binaries
Also, check if any compiler is installed. This is useful if you need to use some kernel exploit as it's recommended to compile it in the machine where you are going to use it (or in one similar)
Vulnerable Software Installed
Check for the version of the installed packages and services. Maybe there is some old Nagios version (for example) that could be exploited for escalating privileges… It is recommended to check manually the version of the more suspicious installed software.
If you have SSH access to the machine you could also use openVAS to check for outdated and vulnerable software installed inside the machine.
Note that these commands will show a lot of information that will mostly be useless, therefore it's recommended some application like OpenVAS or similar that will check if any installed software version is vulnerable to known exploits
Processes
Take a look to what processes are being executed and check if any process has more privileges that it should (maybe a tomcat being executed by root?)
Always check for possible electron/cef/chromium debuggers running, you could abuse it to escalate privileges. Linpeas detect those by checking the --inspect
parameter inside the command line of the process.
Also check your privileges over the processes binaries, maybe you can overwrite someone.
Process monitoring
You can use tools like pspy to monitor processes. This can be very useful to identify vulnerable processes being executed frequently or when a set of requirements are met.
Process memory
Some services of a server save credentials in clear text inside the memory. Normally you will need root privileges to read the memory of processes that belong to other users, therefore this is usually more useful when you are already root and want to discover more credentials. However, remember that as a regular user you can read the memory of the processes you own.
GDB
If you have access to the memory of a FTP service (for example) you could get the Heap and search inside of it the credentials.
GDB Script
/proc/$pid/maps & /proc/$pid/mem
For a given process ID, maps shows how memory is mapped within that processes' virtual address space; it also shows the permissions of each mapped region. The mem pseudo file exposes the processes memory itself. From the maps file we know which memory regions are readable and their offsets. We use this information to seek into the mem file and dump all readable regions to a file.
/dev/mem
/dev/mem
provides access to the system's physical memory, not the virtual memory. The kernels virtual address space can be accessed using /dev/kmem.
Typically, /dev/mem
is only readable by root and kmem group.
Tools
To dump a process memory you could use:
https://github.com/hajzer/bash-memory-dump (root) - You can manually remove root requirements and dump process owned by you
Script A.5 from https://www.delaat.net/rp/2016-2017/p97/report.pdf (root is required)
Credentials from Process Memory
Manual example
If you find that the authenticator process is running:
You can dump the process (see before sections to find different ways to dump the memory of a process) and search for credentials inside the memory:
mimipenguin
The tool https://github.com/huntergregal/mimipenguin will steal clear text credentials from memory and from some well known files. It requires root privileges to work properly.
Feature
Process Name
GDM password (Kali Desktop, Debian Desktop)
gdm-password
Gnome Keyring (Ubuntu Desktop, ArchLinux Desktop)
gnome-keyring-daemon
LightDM (Ubuntu Desktop)
lightdm
VSFTPd (Active FTP Connections)
vsftpd
Apache2 (Active HTTP Basic Auth Sessions)
apache2
OpenSSH (Active SSH Sessions - Sudo Usage)
sshd:
Scheduled/Cron jobs
Check if any scheduled job is vulnerable. Maybe you can take advantage of a script being executed by root (wildcard vuln? can modify files that root uses? use symlinks? create specific files in the directory that root uses?).
Cron path
For example, inside /etc/crontab you can find the PATH: PATH=/home/user:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
(Note how the user "user" has writing privileges over /home/user)
If inside this crontab the root user tries to execute some command or script without setting the path. For example: * * * * root overwrite.sh Then, you can get a root shell by using:
Cron using a script with a wildcard (Wildcard Injection)
If a script being executed by root has a “*” inside a command, you could exploit this to make unexpected things (like privesc). Example:
If the wildcard is preceded of a path like /some/path/* , it's not vulnerable (even ./* is not).
Read the following page for more wildcard exploitation tricks:
Wildcards Spare tricksCron script overwriting and symlink
If you can modify a cron script executed by root, you can get a shell very easily:
If the script executed by root uses a directory where you have full access, maybe it could be useful to delete that folder and create a symlink folder to another one serving a script controlled by you
Frequent cron jobs
You can monitor the processes to search for processes that are being executed every 1,2 or 5 minutes. Maybe you can take advantage of it and escalate privileges.
For example, to monitor every 0.1s during 1 minute, sort by less executed commands and deleting the commands that have beeing executed all the time, you can do:
You can also use pspy (this will monitor and list every process that start).
Invisible cron jobs
It's possible to create a cronjob putting a carriage return after a comment (without new line character), and the cron job will work. Example (note the carriege return char):
Services
Writable .service files
Check if you can write any .service
file, if you can, you could modify it so it executes your backdoor when the service is started, restarted or stopped (maybe you will need to wait until the machine is rebooted).
For example create your backdoor inside the .service file with ExecStart=/tmp/script.sh
Writable service binaries
Keep in mid that if you have write permissions over binaries being executed by services, you can change them for backdoors so when the services get re-executed the backdoors will be executed.
systemd PATH - Relative Paths
You can see the PATH used by systemd with:
If you find that you can write in any of the folders of the path you may be able to escalate privileges. You need to search for relative paths being used on service configurations files like:
Then, create a executable with the same name as the relative path binary inside the systemd PATH folder you can write, and when the service is asked to execute the vulnerable action (Start, Stop, Reload), your backdoor will be executed (unprivileged users usually cannot start/stop services but check if you can using sudo -l
).
Learn more about services with man systemd.service
.
Timers
Timers are systemd unit files whose name ends in . timer that control . service files or events. Timers can be used as an alternative to cron. Timers have built-in support for calendar time events, monotonic time events, and can be run asynchronously.
You can enumerate all the timers doing:
Writable timers
If you can modify a timer you can make it execute some existent systemd.unit (like a .service
or a .target
)
In the documentation you can read what the Unit is:
The unit to activate when this timer elapses. The argument is a unit name, whose suffix is not ".timer". If not specified, this value defaults to a service that has the same name as the timer unit, except for the suffix. (See above.) It is recommended that the unit name that is activated and the unit name of the timer unit are named identically, except for the suffix.
Therefore, in order to abuse this permissions you would need to:
Find some systemd unit (like a
.service
) that is executing a writable binaryFind some systemd unit that is executing a relative path and you have writable privileges over the systemd PATH (to impersonate that executable)
Learn more about timers with man systemd.timer
.
Enabling Timer
In order to enable a timer you need root privileges and to execute:
Note the timer is activated by creating a symlink to it on /etc/systemd/system/<WantedBy_section>.wants/<name>.timer
Sockets
In brief, a Unix Socket (technically, the correct name is Unix domain socket, UDS) allows communication between two different processes on either the same machine or different machines in client-server application frameworks. To be more precise, it’s a way of communicating among computers using a standard Unix descriptors file. (From here).
Sockets can be configured using .socket
files.
Learn more about sockets with man systemd.socket
. Inside this file some several interesting parameters can be configured:
ListenStream
,ListenDatagram
,ListenSequentialPacket
,ListenFIFO
,ListenSpecial
,ListenNetlink
,ListenMessageQueue
,ListenUSBFunction
: This options are different but as summary as used to indicate where is going to listen the socket (the path of the AF_UNIX socket file, the IPv4/6 and/or port number to listen...).Accept
: Takes a boolean argument. If true, a service instance is spawned for each incoming connection and only the connection socket is passed to it. If false, all listening sockets themselves are passed to the started service unit, and only one service unit is spawned for all connections. This value is ignored for datagram sockets and FIFOs where a single service unit unconditionally handles all incoming traffic. Defaults to false. For performance reasons, it is recommended to write new daemons only in a way that is suitable forAccept=no
.ExecStartPre
,ExecStartPost
: Takes one or more command lines, which are executed before or after the listening sockets/FIFOs are created and bound, respectively. The first token of the command line must be an absolute filename, then followed by arguments for the process.ExecStopPre
,ExecStopPost
: Additional commands that are executed before or after the listening sockets/FIFOs are closed and removed, respectively.Service
: Specifies the service unit name to activate on incoming traffic. This setting is only allowed for sockets with Accept=no. It defaults to the service that bears the same name as the socket (with the suffix replaced). In most cases, it should not be necessary to use this option.
Writable .socket files
If you find a writable .socket
file you can add at the beginning of the [Socket]
section something like: ExecStartPre=/home/kali/sys/backdoor
and the backdoor will be executed before the socket is created. Therefore, you will probably need to wait until the machine is rebooted.
Note that the system must be using that socket file configuration or the backdoor won't be executed
Writable sockets
If you identify any writable socket (now where are talking about Unix Sockets, not about the config .socket
files), then, you can communicate with that socket and maybe exploit a vulnerability.
Enumerate Unix Sockets
Raw connection
Exploitation example:
Socket Command InjectionHTTP sockets
Note that there may be some sockets listening for HTTP requests (I'm not talking about .socket files but about the files acting as unix sockets). You can check this with:
If the socket respond with a HTTP request, then you can communicate with it and maybe exploit some vulnerability.
Writable Docker Socket
The docker socket is typically located at /var/run/docker.sock
and is only writable by root
user and docker
group.
If for some reason you have write permissions over that socket you can escalate privileges.
The following commands can be used to escalate privileges:
Use docker web API from socket without docker package
If you have access to docker socket but you can't use the docker binary (maybe it isn't even installed), you can use directly the web API with curl
.
The following commands are a example to create a docker container that mount the root of the host system and use socat
to execute commands into the new docker.
The last step is to use socat
to initiate a connection to the container, sending an attach request
Now, you can execute commands on the container from this socat
connection.
Others
Note that if you have write permissions over the docker socket because you are inside the group docker
you have more ways to escalate privileges. If the docker API is listening in a port you can also be able to compromise it.
Containerd (ctr) privilege escalation
If you find that you can use the ctr
command read the following page as you may be able to abuse it to escalate privileges:
RunC privilege escalation
If you find that you can use the runc
command read the following page as you may be able to abuse it to escalate privileges:
D-Bus
D-BUS is an inter-process communication (IPC) system, providing a simple yet powerful mechanism allowing applications to talk to one another, communicate information and request services. D-BUS was designed from scratch to fulfil the needs of a modern Linux system.
D-BUS, as a full-featured IPC and object system, has several intended uses. First, D-BUS can perform basic application IPC, allowing one process to shuttle data to another—think UNIX domain sockets on steroids. Second, D-BUS can facilitate sending events, or signals, through the system, allowing different components in the system to communicate and ultimately to integrate better. For example, a Bluetooth dæmon can send an incoming call signal that your music player can intercept, muting the volume until the call ends. Finally, D-BUS implements a remote object system, letting one application request services and invoke methods from a different object—think CORBA without the complications. **(From here).
D-Bus uses an allow/deny model, where each message (method call, signal emission, etc.) can be allowed or denied according to the sum of all policy rules which match it. Each or rule in the policy should have the own
, send_destination
or receive_sender
attribute set.
Part of the policy of /etc/dbus-1/system.d/wpa_supplicant.conf
:
Therefore, if a policy is allowing your user in anyway to interact with the bus, you could be able to exploit it to escalate privileges (maybe just listing for some passwords?).
Note that a policy that doesn't specify any user or group affects everyone (<policy>
).
Policies to the context "default" affects everyone not affected by other policies (<policy context="default"
).
Learn how to enumerate and exploit a D-Bus communication here:
D-Bus Enumeration & Command Injection Privilege EscalationNetwork
It's always interesting to enumerate the network and figure out the position of the machine.
Generic enumeration
Open ports
Always check network services running on the machine that you wasn't able to interact with before accessing to it:
Sniffing
Check if you can sniff traffic. If you can, you could be able to grab some credentials.
Users
Generic Enumeration
Check who you are, which privileges do you have, which users are in the systems, which ones can login and which ones have root privileges:
Big UID
Some Linux versions were affected by a bug that allow users with UID > INT_MAX to escalate privileges. More info: here, here and here.
Exploit it using: systemd-run -t /bin/bash
Groups
Check if you are a member of some group that could grant you root privileges:
Interesting Groups - Linux PEClipboard
Check if anything interesting is located inside the clipboard (if possible)
Password Policy
Known passwords
If you know any password of the environment try to login as each user using the password.
Su Brute
If don't mind about doing a lot of noise and su
and timeout
binaries are present on the computer you can try to brute-force user using su-bruteforce.
Linpeas with -a
parameter also try to brute-force users.
Writable PATH abuses
$PATH
If you find that you can write inside some folder of the $PATH you may be able to escalate privileges by creating a backdoor inside the writable folder with the name of some command that is going to be executed by a different user (root ideally) and that is not loaded from a folder that is located previous to your writable folder in $PATH.
SUDO and SUID
You could be allowed to execute some command using sudo or they could have the suid bit. Check it using:
Some unexpected commands allows you to read and/or write files or even execute command. For example:
NOPASSWD
Sudo configuration might allow a user to execute some command with another user privileges without knowing the password.
In this example the user demo
can run vim
as root
, it is now trivial to get a shell by adding an ssh key into the root directory or by calling sh
.
SETENV
This directive allows the user to set an environment variable while executing something:
This example, based on HTB machine Admirer, was vulnerable to PYTHONPATH hijacking in order to load an arbitrary python library while executing the script as root:
Sudo execution bypassing paths
Jump to read other files or use symlinks. For example in sudeores file: hacker10 ALL= (root) /bin/less /var/log/*
If a wilcard is used (*), it is even easier:
Countermeasures: https://blog.compass-security.com/2012/10/dangerous-sudoers-entries-part-5-recapitulation/
Sudo command/SUID binary without command path
If the sudo permission is given to a single command without specifying the path: hacker10 ALL= (root) less you can exploit it by changing the PATH variable
This technique can also be used if a suid binary executes another command without specifying the path to it (always check with strings the content of a weird SUID binary).
SUID binary with command path
If the suid binary executes another command specifying the path, then, you can try to export a function named as the command that the suid file is calling.
For example, if a suid binary calls /usr/sbin/service apache2 start you have to try to create the function and export it:
Then, when you call the suid binary, this function will be executed
LD_PRELOAD
LD_PRELOAD is an optional environmental variable containing one or more paths to shared libraries, or shared objects, that the loader will load before any other shared library including the C runtime library (libc.so) This is called preloading a library.
To avoid this mechanism being used as an attack vector for suid/sgid executable binaries, the loader ignores LD_PRELOAD if ruid != euid. For such binaries, only libraries in standard paths that are also suid/sgid will be preloaded.
If you find inside the output of sudo -l
the sentence: env_keep+=LD_PRELOAD and you can call some command with sudo, you can escalate privileges.
Save as /tmp/pe.c
Then compile it using:
Finally, escalate privileges running
SUID Binary – so injection
If you find some weird binary with SUID permissions, you could check if all the .so files are loaded correctly. In order to do so you can execute:
For example, if you find something like: pen(“/home/user/.config/libcalc.so”, O_RDONLY) = -1 ENOENT (No such file or directory) you can exploit it.
Create the file /home/user/.config/libcalc.c with the code:
Compile it using:
And execute the binary.
GTFOBins
GTFOBins is a curated list of Unix binaries that can be exploited by an attacker to bypass local security restrictions.
The project collects legitimate functions of Unix binaries that can be abused to break out restricted shells, escalate or maintain elevated privileges, transfer files, spawn bind and reverse shells, and facilitate the other post-exploitation tasks.
gdb -nx -ex '!sh' -ex quit sudo mysql -e '! /bin/sh' strace -o /dev/null /bin/sh sudo awk 'BEGIN {system("/bin/sh")}'
FallOfSudo
If you can access sudo -l
you can use the tool FallOfSudo to check if it finds how to exploit any sudo rule.
Reusing Sudo Tokens
In the scenario where you have a shell as a user with sudo privileges but you don't know the password of the user, you can wait him to execute some command using sudo
. Then, you can access the token of the session where sudo was used and use it to execute anything as sudo (privilege escalation).
Requirements to escalate privileges:
You already have a shell as user "sampleuser"
"sampleuser" have used
sudo
to execute something in the last 15mins (by default that's the duration of the sudo token that allows to usesudo
without introducing any password)cat /proc/sys/kernel/yama/ptrace_scope
is 0gdb
is accessible (you can be able to upload it)
(You can temporarily enable ptrace_scope
with echo 0 | sudo tee /proc/sys/kernel/yama/ptrace_scope
or permanently modifying /etc/sysctl.d/10-ptrace.conf
and setting kernel.yama.ptrace_scope = 0
)
If all these requirements are met, you can escalate privileges using: https://github.com/nongiach/sudo_inject
The first exploit (
exploit.sh
) will create the binaryactivate_sudo_token
in /tmp. You can use it to activate the sudo token in your session (you won't get automatically a root shell, dosudo su
):
The second exploit (
exploit_v2.sh
) will create a sh shell in /tmp owned by root with setuid
The third exploit (
exploit_v3.sh
) will create a sudoers file that makes sudo tokens eternal and allows all users to use sudo
/var/run/sudo/ts/<Username>
If you have write permissions in the folder or on any of the created files inside the folder you can use the binary write_sudo_token to create a sudo token for a user and PID. For example if you can overwrite the file /var/run/sudo/ts/sampleuser and you have a shell as that user with PID 1234, you can obtain sudo privileges without needing to know the password doing:
/etc/sudoers, /etc/sudoers.d
The file /etc/sudoers
and the files inside /etc/sudoers.d
configure who can use sudo
and how. This files by default can only be read by user root and group root.
If you can read this file you could be able to obtain some interesting information, and if you can write any file you will be able to escalate privileges.
If you can write you can abuse this permissions
Other way to abuse these permissions:
DOAS
There are some alternatives to the sudo
binary such as doas
for OpenBSD, remember to check its configuration at /etc/doas.conf
Shared Library
ld.so
The file /etc/ld.so.conf
indicates where are loaded the configurations files from. Typically, this file contains the following path: include /etc/ld.so.conf.d/*.conf
That means that the configuration files from /etc/ld.so.conf.d/*.conf
will be read. This configuration files points to another folders where libraries are going to be searched for. For example, the content of /etc/ld.so.conf.d/libc.conf
is /usr/local/lib
. This means that the system will search for libraries inside /usr/local/lib
.
If for some reason a user has write permissions on any of the paths indicated: /etc/ld.so.conf
, /etc/ld.so.conf.d/
, any file inside /etc/ld.so.conf.d/
or any folder indicated inside any config file inside /etc/ld.so.conf.d/*.conf
he may be able to escalate privileges.
Take a look about how to exploit this misconfiguration in the following page:
RPATH
By copying the lib into /var/tmp/flag15/
it will be used by the program in this place as specified in the RPATH
variable.
Then create an evil library in /var/tmp
with gcc -fPIC -shared -static-libgcc -Wl,--version-script=version,-Bstatic exploit.c -o libc.so.6
Capabilities
Linux capabilities provide a subset of the available root privileges to a process. This effectively breaks up root privileges into smaller and distinctive units. Each of these units can then be independently be granted to processes. This way the full set of privileges is reduced and decreasing the risks of exploitation. Read the following page to learn more about capabilities and how to abuse them:
Linux CapabilitiesACLs
ACLs are a second level of discretionary permissions, that may override the standard ugo/rwx ones. When used correctly they can grant you a better granularity in setting access to a file or a directory, for example by giving or denying access to a specific user that is neither the file owner, nor in the group owner (from here). Give user "kali" read and write permissions over a file:
Get files with specific ACLs from the system:
Open shell sessions
In old versions you may hijack some shell session of a different user (root). In newest versions you will be able to connect to screen sessions only of your own user. However, you could find interesting information inside of the session.
screen sessions hijacking
List screen sessions
Attach to a session
tmux sessions hijacking
Apparently this was a problem with old tmux versions. I wasn't able to hijack a tmux (v2.1) session created by root from a non-privileged user.
List tmux sessions
Attach to a session
Check valentine box from HTB for an example.
SSH
Debian OpenSSL Predictable PRNG - CVE-2008-0166
All SSL and SSH keys generated on Debian-based systems (Ubuntu, Kubuntu, etc) between September 2006 and May 13th, 2008 may be affected by this bug. This bug caused that when creating in those OS a new ssh key only 32,768 variations were possible. This means that all the possibilities can be calculated and having the ssh public key you can search for the corresponding private key. You can find the calculated possibilities here: https://github.com/g0tmi1k/debian-ssh
SSH Interesting configuration values
PasswordAuthentication: Specifies whether password authentication is allowed. The default is
no
.PubkeyAuthentication: Specifies whether public key authentication is allowed. The default is
yes
.PermitEmptyPasswords: When password authentication is allowed, it specifies whether the server allows login to accounts with empty password strings. The default is
no
.
PermitRootLogin
Specifies whether root can log in using ssh, default is no
. Possible values:
yes
: root can login using password and private keywithout-password
orprohibit-password
: root can only login with private keyforced-commands-only
: Root can login only using privatekey cand if the commands options is specifiedno
: no
AuthorizedKeysFile
Specifies files that contains the public keys that can be used for user authentication. I can contains tokens like %h
, that will be replaced by the home directory. You can indicate absolute paths (starting in /
) or relative paths from the users home. For example:
That configuration will indicate that if you try to login with the private key **of the user "testusername**" ssh is going to compare the public key of your key with the ones located in /home/testusername/.ssh/authorized_keys
and /home/testusername/access
ForwardAgent/AllowAgentForwarding
SSH agent forwarding allows you to use your local SSH keys instead of leaving keys (without passphrases!) sitting on your server. So, you will be able to jump via ssh to a host and from there jump to another host using the key located in your initial host.
You need to set this option in $HOME/.ssh.config
like this:
Notice that if Host
is *
every time the user jumps to a different machine that host will be able to access the keys (which is a security issue).
The file /etc/ssh_config
can override this options and allow or denied this configuration.
The file /etc/sshd_config
can allow or denied ssh-agent forwarding with the keyword AllowAgentForwarding
(default is allow).
If you Forward Agent configured in an environment **[check here how to exploit it to escalate privileges**](ssh-forward-agent-exploitation.md).
Interesting Files
Profiles files
The file /etc/profile
and the files under /etc/profile.d/
are scripts that are executed when a user run a new shell. Therefore, if you can write or modify any of the you can escalate privileges.
If any weird profile script is found you should check it for sensitive details.
Passwd/Shadow Files
Depending on the OS the /etc/passwd
and /etc/shadow
files may be using a different name or there may be a backup. Therefore it's recommended find all of hem and check if you can read them and check if there are hashes inside the files:
In some occasions you can find password hashes inside the /etc/passwd
(or equivalent) file
Writable /etc/passwd
First generate a password with one of the following commands.
Then add the user hacker
and add the generated password.
E.g: hacker:$1$hacker$TzyKlv0/R/c28R.GAeLw.1:0:0:Hacker:/root:/bin/bash
You can now use the su
command with hacker:hacker
Alternatively you can use the following lines to add a dummy user without a password. WARNING: you might degrade the current security of the machine.
NOTE: In BSD platforms /etc/passwd
is located at /etc/pwd.db
and /etc/master.passwd
, also the /etc/shadow
is renamed to /etc/spwd.db
.
You should check if you can write in some sensitive file. For example, can you write to some service configuration file?
For example, if the machine is running a tomcat server and you can modify the Tomcat service configuration file inside /etc/systemd/, then you can modify the lines:
Your backdoor will be executed the next time that tomcat is started.
Check Folders
The following folders may contain backups or interesting information: /tmp, /var/tmp, /var/backups, /var/mail, /var/spool/mail, /etc/exports, /root (Probably you won't be able to read the last one but try)
Weird Location/Owned files
Modified files in last mins
Sqlite DB files
*_history, .sudo_as_admin_successful, profile, bashrc, httpd.conf, .plan, .htpasswd, .git-credentials, .rhosts, hosts.equiv, Dockerfile, docker-compose.yml files
Hidden files
Script/Binaries in PATH
Web files
Backups
Known files containing passwords
Read the code of linPEAS, it searches for several possible files that could contain passwords. Other interesting tool that you can use to do so is: LaZagne which is an open source application used to retrieve lots of passwords stored on a local computer for Windows, Linux & Mac.
Logs
If you can read logs, you may be able to find interesting/confidential information inside of them. The more strange the log is, the more interesting will be (probably). Also, some "bad" configured (backdoored?) audit logs may allow you to record passwords inside audit logs as explained in this post: https://www.redsiege.com/blog/2019/05/logging-passwords-on-linux/.
In order to read logs the group adm will be really helpful.
Generic Creds Search/Regex
You should also check for files containing the word "password" in it's name or inside the content, also check for IPs and emails inside logs, or hashes regexps. I'm not going to list here how to do all of this but if you are interested you can check the last checks that linpeas perform.
Writable files
Python library hijacking
If you know from where a python script is going to be executed and you can write inside that folder or you can modify python libraries, you can modify the os library and backdoor it (if you can write where python script is going to be executed, copy and paste the os.py library).
To backdoor the library just add at the end of the os.py library the following line (change IP and PORT):
Logrotate exploitation
There is a vulnerability on logrotate
that allows a user with write permissions over a log file or any of its parent directories to make logrotate
write a file in any location. If logrotate is being executed by root, then the user will be able to write any file in /etc/bash_completion.d/ that will be executed by any user that login.
So, if you have write perms over a log file or any of its parent folder, you can privesc (on most linux distributions, logrotate is executed automatically once a day as user root). Also, check if apart of /var/log there are more files being rotated.
This vulnerability affects logrotate
version 3.15.1
and below
More detailed information about the vulnerability can be found in this page: https://tech.feedyourhead.at/content/details-of-a-logrotate-race-condition.
You can exploit this vulnerability with logrotten.
This vulnerability is very similar to CVE-2016-1247 (nginx logs), so whenever you find that you can alter logs, check who is managing those logs and check if you can escalate privileges substituting the logs by symlinks.
/etc/sysconfig/network-scripts/ (Centos/Redhat)
If, for whatever reason, a user is able to write an ifcf-<whatever>
script to /etc/sysconfig/network-scripts or it can adjust an existing one, then your system is pwned.
Network scripts, ifcg-eth0 for example are used for network connections. The look exactly like .INI files. However, they are ~sourced~ on Linux by Network Manager (dispatcher.d).
In my case, the NAME=
attributed in these network scripts is not handled correctly. If you have white/blank space in the name the system tries to execute the part after the white/blank space. Which means; everything after the first blank space is executed as root.
For example: /etc/sysconfig/network-scripts/ifcfg-1337
(Note the black space between Network and /bin/id)
Vulnerability reference: https://vulmon.com/exploitdetails?qidtp=maillist_fulldisclosure&qid=e026a0c5f83df4fd532442e1324ffa4f****
init, init.d, systemd, and rc.d
/etc/init.d
contains scripts used by the System V init tools (SysVinit). This is the traditional service management package for Linux, containing the init
program (the first process that is run when the kernel has finished initializing¹) as well as some infrastructure to start and stop services and configure them. Specifically, files in /etc/init.d
are shell scripts that respond to start
, stop
, restart
, and (when supported) reload
commands to manage a particular service. These scripts can be invoked directly or (most commonly) via some other trigger (typically the presence of a symbolic link in /etc/rc?.d/
). (From here)
Other alternative to this folder is /etc/rc.d/init.d
in Redhat
/etc/init
contains configuration files used by Upstart. Upstart is a young service management package championed by Ubuntu. Files in /etc/init
are configuration files telling Upstart how and when to start
, stop
, reload
the configuration, or query the status
of a service. As of lucid, Ubuntu is transitioning from SysVinit to Upstart, which explains why many services come with SysVinit scripts even though Upstart configuration files are preferred. In fact, the SysVinit scripts are processed by a compatibility layer in Upstart. (From here)
systemd is a Linux initialization system and service manager that includes features like on-demand starting of daemons, mount and automount point maintenance, snapshot support, and processes tracking using Linux control groups. systemd provides a logging daemon and other tools and utilities to help with common system administration tasks. (From here)
Files that ships in packages downloaded from distribution repository go into /usr/lib/systemd/
. Modifications done by system administrator (user) go into /etc/systemd/system/
.
Other Tricks
NFS Privilege escalation
NFS no_root_squash/no_all_squash misconfiguration PEEscaping from restricted Shells
Escaping from JailsCisco - vmanage
Cisco - vmanageMore help
Linux/Unix Privesc Tools
Best tool to look for Linux local privilege escalation vectors: LinPEAS
LinEnum: https://github.com/rebootuser/LinEnum(-t option) Unix Privesc Check: http://pentestmonkey.net/tools/audit/unix-privesc-check Linux Priv Checker: www.securitysift.com/download/linuxprivchecker.py BeeRoot: https://github.com/AlessandroZ/BeRoot/tree/master/Linux Kernelpop: Enumerate kernel vulns ins linux and MAC https://github.com/spencerdodd/kernelpop Mestaploit: multi/recon/local_exploit_suggester Linux Exploit Suggester: https://github.com/mzet-/linux-exploit-suggester EvilAbigail (physical access): https://github.com/GDSSecurity/EvilAbigail Recopilation of more scripts: https://gh-dark.rauchg.now.sh/1N3/PrivEsc/tree/master/linux
Bibliography
https://blog.g0tmi1k.com/2011/08/basic-linux-privilege-escalation/ https://payatu.com/guide-linux-privilege-escalation/ https://pen-testing.sans.org/resources/papers/gcih/attack-defend-linux-privilege-escalation-techniques-2016-152744 http://0x90909090.blogspot.com/2015/07/no-one-expect-command-execution.html https://touhidshaikh.com/blog/?p=827 https://github.com/sagishahar/lpeworkshop/blob/master/Lab%20Exercises%20Walkthrough%20-%20Linux.pdf https://github.com/frizb/Linux-Privilege-Escalation https://github.com/lucyoa/kernel-exploits https://github.com/rtcrowley/linux-private-i
Last updated