Bypassing Canary & PIE
Last updated
Last updated
If you are facing a binary protected by a canary and PIE (Position Independent Executable) you probably need to find a way to bypass them.
The best way to bypass a simple canary is if the binary is a program forking child processes every time you establish a new connection with it (network service), because every time you connect to it the same canary will be used.
Then, the best way to bypass the canary is just to brute-force it char by char, and you can figure out if the guessed canary byte was correct checking if the program has crashed or continues its regular flow. In this example the function brute-forces an 8 Bytes canary (x64) and distinguish between a correct guessed byte and a bad byte just checking if a response is sent back by the server (another way in other situation could be using a try/except):
In order to bypass the PIE you need to leak some address. And if the binary is not leaking any addresses the best to do it is to brute-force the RBP and RIP saved in the stack in the vulnerable function. For example, if a binary is protected using both a canary and PIE, you can start brute-forcing the canary, then the next 8 Bytes (x64) will be the saved RBP and the next 8 Bytes will be the saved RIP.
To brute-force the RBP and the RIP from the binary you can figure out that a valid guessed byte is correct if the program output something or it just doesn't crash. The same function as the provided for brute-forcing the canary can be used to brute-force the RBP and the RIP:
The last thing you need to defeat the PIE is to calculate useful addresses from the leaked addresses: the RBP and the RIP.
From the RBP you can calculate where are you writing your shell in the stack. This can be very useful to know where are you going to write the string "/bin/sh\x00" inside the stack. To calculate the distance between the leaked RBP and your shellcode you can just put a breakpoint after leaking the RBP an check where is your shellcode located, then, you can calculate the distance between the shellcode and the RBP:
From the RIP you can calculate the base address of the PIE binary which is what you are going to need to create a valid ROP chain.
To calculate the base address just do objdump -d vunbinary
and check the disassemble latest addresses:
In that example you can see that only 1 Byte and a half is needed to locate all the code, then, the base address in this situation will be the leaked RIP but finishing on "000". For example if you leaked 0x562002970ecf the base address is 0x562002970000